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Palladium catalyzed coupling reactions of cationic porphyrins
with organoboranes (Suzuki) and alkenes (Heck)
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Abstract—The carbon–carbon coupling reaction in aqueous medium between 5,10,15-tri-(4-N-methylpyridyl)-20-(4-bromophenyl)-
porphyrin and a variety of organoboranes, fluoroorganoboranes and alkenes using palladium catalyst (Suzuki and Heck) is
explored.
� 2006 Elsevier Ltd. All rights reserved.
The unique physical–chemical and spectral properties of
porphyrin derivatives make them one of the most highly
studied macrocyclic and coordination compounds.1

They have found many applications as catalysts, model
compounds for enzymic transformations and as photo-
sensitizers for the photodynamic therapy (PDT) of
various medical conditions.1,2 Positively charged
water-soluble porphyrins are of particular interest for
PDT due to their preferential uptake by mitochondria
and high binding affinity for DNA.3 More recently, cat-
ionic porphyrins were also shown to inhibit telomerase
activity due to their favorable properties for interacting
with the guanine tetrads of DNA.4 Their efficacy as pho-
tosensitizer is directly related to their biodistribution
and pharmacokinetics, which in turn can be modulated
by the nature of substituents.5 Conventional methods to
prepare cationic porphyrins proceed under reflux in
organic acid, that is, conditions incompatible with the
use of labile substituents. We recently developed an
alternative method to prepare libraries of porphyrins
for QSAR studies using the palladium catalyzed (Sono-
gashira) carbon–carbon coupling reaction between
5,10,15-tri-(pyridyl)-20-(4-bromophenyl)-porphyrin and
various terminal alkynyls in aqueous medium.6 Some
of these compounds exhibit strong photodynamic prop-
erties (unpublished results), which led us to further
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explore other reactions to enlarge our library. Both
Suzuki7 and Heck8 reactions have been reported to
proceed in aqueous media. Here we investigated the
use of these processes for the modification of cationic
porphyrins under green chemistry conditions. The use
of water instead of organic solvents has several advan-
tages such as reduced toxicity and unusual reactivity
as well as ease of catalyst recovery.9

The precursors for the coupling reactions, the 5,10,15-
tri-(pyridyl)-20-(4-bromophenyl)-porphyrin (1) and the
5,10-di-(pyridyl)-15,20-di-(4-bromophenyl)-porphyrin,
were prepared by modifying a known procedure.10 The
stoichiometric condensation of 4-pyridine-carboxalde-
hyde, 4-bromo-benzaldehyde and pyrrole in refluxing
propionic acid followed by purification over silica gel
using THF and CH2Cl2 as eluants gave the mono-
through tetra-bromo cationic porphyrins in low yield.
Two different routes were investigated for the prepara-
tion of the water-soluble substituted porphyrins. The
first procedure involves a palladium catalyzed reaction
in aqueous media between the methylated compound 3
and organoboranes or alkenes to yield the final products
4 or 6 (green chemistry conditions). The second route
involves initial coupling of the bromo compound 1 with
organoboranes or alkenes in organic solvent, followed
by methylation with iodomethane to yield the final
products 4 and 6.

Recently we showed that the coupling of the methylated,
water-soluble cationic porphyrin 3 to terminal alkynyls
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(Sonagashira) smoothly proceeds under aqueous condi-
tions. In contrast, coupling of the non-methylated
porphyrin 1 in organic medium required a stronger cat-
alyst, such as Pd2(dba)3/P(t-Bu)3.6

The monobromo cationic porphyrin 3 reacted smoothly
with phenylboronic acid in aqueous medium (H2O/
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CH3CN) using Pd(OAc)2/TPPTS catalyst/ligand to
yield the coupling product 4a in moderate yield. Other
substituted phenylboronic acids also reacted under these
conditions (Table 1). Changing the central Zn ion for Ni
reduced the reactivity, requiring longer reaction times
(24 h vs 5 h). No coupling product was obtained with
non-metalated porphyrin. Organofluoroboranes are
more stable and more reactive as compared to boronic
acids, and also give superior yields in Pd-catalyzed
coupling reactions.11 Thus, we attempted the Suzuki
coupling reaction in aqueous medium using potassium
trifluoroborane derivatives. Yields were higher as with
the boronic acids but required longer reaction times
(Table 2).
We also performed the Suzuki coupling reaction of the
known porphyrin 1 with organoboranes in organic med-
ium. As previously reported,6 this reaction also required
the strong Pd2(dba)3/P(t-Bu)3 catalyst. However, the
Et3N base needed to be replaced by Cs2CO3 in order
to obtain the desired compounds 2 in moderate yields
(Table 3). The latter were methylated to give the



Table 2. Suzuki reaction of zinc porphyrin 3 and fluoroorganoborane
to yield 4 in aqueous media

Compd Organoborane Time
(h)

Yield
(%)a

2f Potassium 4-tert-butylphenyl-
trifluoroborane

12 67

2g Potassium vinyltrifluoroborane 12 56
2h Potassium 3-hydroxyphenyl-

trifluoroborane
12 72

Reaction conditions: Pd(OAc)2/TPPTS in H2O/CH3CN (1:1, v/v) and
K2CO3 at 60–70 �C.
a Isolated yield.
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Table 1. Suzuki reaction of porphyrin 3 and organoborane to yield 4

in aqueous media

Compd Metal Alkyne Time
(h)

Yield
(%)a

4a Zn Phenylboronic acid 5 56
4b Zn 4-Acetylphenylboronic acid 5 66
4c Zn 4-Methoxyphenylboronic acid 6 56
4d Zn 4-Carboxyphenylboronic acid 8 34
4e Ni Phenylboronic acid 24 45
4f H2 Phenylboronic acid 24 0

Reaction conditions: Pd(Oac)2/TPPTS in H2O/CH3CN (1:1, v/v) and
K2CO3 at 60–70 �C.
a Isolated yield.

Table 3. Suzuki coupling reaction of porphyrin 1 and organoborane to
yield 2 in organic solvent

Compd Metal Organoborane Time
(h)

Yield
(%)a

2a Zn 4-Methoxyphenylboronic acid 6 65
2b Ni 4-Methoxyphenylboronic acid 24 58
2c Zn 4-Acetylphenylboronic acid 5 75
2d Ni 4-Acetylphenylboronic acid 24 71
2e Zn trans-1-Hexen-1-ylboronic acid 6 76

Reaction conditions: Pd2dba3/P(t-Bu)3 in DMF and Cs2CO3 at 90 �C.
a Isolated yield.

Table 4. Heck reaction of zinc porphyrin 3 and organoborane to yield
4 in organic solvent

Entry Alkene Time (h) Yield (%)a

6a Styrene 12 32
6b Acrylonitrile 12 47

Reaction conditions: Pd2dba3/P(t-Bu)3 in DMF and Et3N at 90 �C.
a Isolated yield.
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water-soluble porphyrin 4, which is the same compound
as that obtained via the Suzuki coupling of 3 in aqueous
medium.

The Heck procedure is also known to proceed under
aqueous conditions. However, all attempts to obtain
Pd-catalyzed coupling products in aqueous media failed.
This reaction can be achieved in organic solvent (DMF
and Et3N base) using the non-methylated porphyrin 1 to
yield coupling product 5 (Table 4), which upon methyl-
ation gives the water-soluble product 6. In the case of
the Heck6 reaction, we were not able to isolate the nickel
porphyrin coupling products. Interestingly, when the
reaction was performed with the dipyridine dibromo
analog of 1 a much weaker catalyst such as Pd[P(Ph)3]4
could be used to accomplish the above reactions
(unpublished results).
We also studied the Pd-catalyzed coupling between cat-
ionic porphyrins and other substrates such as amines,12

thiols13 and phosphines.14 In the case of the amines and
phosphines, using either organic solvent or aqueous con-
ditions, HPLC analysis did not reveal any coupling
products. The coupling reaction with thiol likewise did
not proceed in organic solvent. However, in aqueous
medium the bromo compound 3 reacted with 2-mercap-
toethanol to yield a complex reaction mixture that did
not contain any expected coupling product.

All products obtained from the reactions conducted in
aqueous medium were purified on a reversed-phase
polymer-based column using aqueous buffer and aceto-
nitrile.15 While most of the products could be recovered
by this method, some impurities including some of the
desired product, remained on the column and could only
be eluted with 100% DMSO. This may explain the some-
what lower yield obtained with the aqueous-based cou-
pling reaction as compared to the reaction performed
in organic solvent (Tables 1 and 3). All the new products
were characterized using 1H NMR, UV–vis and mass
spectroscopic analyses.16

In summary, we have shown that cationic porphyrins
can be modified under various Pd-catalyzed reaction
conditions using aqueous as well as organic media.
However, the reactivity and yield vary extensively
depending on the nature of the reactants, solvent,
central metal ion as well as the number of pyridine rings
attached to the porphyrin core.
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